Status of e⁺e⁻ spin/mixture studies

Snowmass Energy Frontier Workshop, BNL April 5, 2013 J.List (DESY)

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

The Charge

- Especially in the case of e+e-, we wanted to see where the prior studies stand.
 - 1. what has been studied
 - 2. what are the techniques used to measure spin/mixture
 - 3. what to expect for exotic non-zero spin measurements / exclusion
 - 4. what to expect for the measurement / exclusion of CP-violating contribution in bosonic couplings
 - 5. what to expect for the measurement / exclusion of CP-violating contribution in fermionic couplings

Disclaimer

 None of the work presented here has been done by me

(but at least in the group I was in at the time....)

- I'll do my best to summarize the status
- Emphasis on detector level studies that's what we trust in more....
- Apologies if I missed something I'm happy to hear about any additional studies, please come forward!

Detector Level Studies

- Spin-Parity from threshold scan
- •CP even/odd mixing in hZZ coupling (ie. bosonic)
 - Scalar/pseudoscalar mixing in decays to tau-leptons (ie. fermionic)

The Textbook Plot

- J^P determination from shape of threshold
- Status: from TESLA TDR, cf. LC-PHSM-2001-055, Lohmann et al
- M_H = 120 GeV
- 20 fb⁻¹ / point
- Discrimination of J^P= 0+, 1-, 2+ on 10-5 level
- Would we learn something important from an update?

CP Mixtures in Bosonic Couplings

- In addition to CP-even, SM-like s-wave amplitude $\mathcal{M}_{\rm HZ}$, allow CP-odd p-wave amplitude $\mathcal{M}_{\rm AZ}$ with coupling η :
 - $\mathcal{M}_{\Phi Z} = \mathcal{M}_{HZ} + \eta \mathcal{M}_{AZ}$, η purely virtual, SM: $\eta = 0$
- MSSM: ZZA vertex forbidden at Born-level, η loop-induced 2HDM or other Higgs extensions: η could be arbitrarily large!
- Effects of η: absolute square of matrix element contain
 - CP violating term ~η → forward-backward asymmetry
 - CP conserving term ~η²
 - → increase in total x-section
 - → but sign ambiguity!

Accessing the CP-violating term

- 3 possibilities:
 - cosθ distribution
 - Optimal observable

$$O = \sigma_{CP}/\sigma_{SM}$$

$$= 2 \Re \mathcal{E}(\mathcal{M}_{ZA}^* \mathcal{M}_{ZA}) / |\mathcal{M}_{ZH}|^2$$

- Mean <*O*>
- Which gives best sensitivity?

method	$w/o \sigma_{tot}$	with σ_{tot}
	$\Delta \eta$	
$\cos \theta$	0.046	0.033
$opt.obs.\mathcal{O}$	0.032	0.026
< 0 >	0.032	0.026

Calibration Curves and Effect of Background

- Optimal observable gives clear gain over cosθ
- <O> as good as full distribution
- Combination with total x-section helps further
- Residual background in final sample
 → changes calibration curves

Summary of Measurement

Comments on Status

- Study done for $E_{CM} = 350 \text{ GeV}$, $m_h = 120 \text{ GeV}$, 500 fb^{-1}
- Based on ZH → µµH
- Should work better at 250 GeV:
 - better momentum resolution
 - Higher cross-section
- What about electrons?
- For total cross-section: also $Z \rightarrow hadrons$?
- => should be interesting to update any volunteers?

Scalar / Pseudoscalar Mixing Angle in htt Coupling

- ZH/ZA with H/A \rightarrow T⁺T⁻ \rightarrow ρ ⁺ $v\rho$ ⁻ $v \rightarrow \pi$ ⁺ π 0 $v\pi$ ⁻ π 0v
- Acoplanarity angle ϕ^* between ρ decay products in restframe of ρ^+ ρ^- system
- Divide events into two classes:
 y₁y₂ > 0 and y₁y₂ < 0, with

$$y_1 = \frac{E_{\pi^+} - E_{\pi^0}}{E_{\pi^+} + E_{\pi^0}}; \qquad y_2 = \frac{E_{\pi^-} - E_{\pi^0}}{E_{\pi^-} + E_{\pi^0}}.$$

Problem: Neutrinos!

First Step: Cheat τ restframes

• $E_{CM} = 350 \text{ GeV}, m_h = 120 \text{ GeV}$

Standard Model

Real Life: reconstructed Trestframes

• $E_{CM} = 350 \text{ GeV}, m_h = 120 \text{ GeV}, 500 \text{ fb}^{-1}$:

- => Can determine mixing angle to ±6° (1ab-1)
 - Many possible improvements: eg. other decay modes

Theory Studies

More on $h \rightarrow T^{+}T^{-}$:

- Krämer, Kühn, Stong and Zerwas
- Berge, Bernreuther, Spiesberger

At higher energies: ttH

 → excellent talk by M. Mühlleitner at LCForum Feb 2012, DESY

https://indico.desy.de/getFile.py/access?contribId=45&sessionId=3&resId=0&materiaIId=slides&confId=4980

Spin and CP determination in ttH

Coupling of general CP-mixed state Φ to tt:

$$C_{tt\Phi} = -i \frac{e}{\sin \theta_W} \frac{m_t}{2M_W} (a + ib\gamma_5) \equiv -ig_{ttH} (a + ib\gamma_5)$$
 $a, b \in [-1, ..., 1]$

- Observables:
 - Total cross-section and its energy dependence (CP-even!)
 - Top quark polarisation asymmetry
 - Up-down asymmetry of t => can directly probe CP violation

Combined sensitivity on a and b at 800 GeV

Polarisation of both beams essential!

Conclusions

- e⁺e⁻ collisions at the ILC allow model-independent measurement of CP mixture of Higgs boson
- Bosonic couplings: hZZ, detemine admixture to 2-3%
- Fermionic couplings: h → τ τ , tth
- Beam polarisation important
- Detector level studies need updates volunteers?
- No detector level study for CP study in tth yet volunteers?